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We prove a new type of N-representability result: given a totally symmetric density
function ρ, we construct a wavefunction Ψ such that the totally symmetric part of ρΨ (its
projection over the totally symmetric functions) be equal to ρ, and, furthermore, such that
Ψ belongs to a given class of symmetry associated to the symmetry group of a molecule.
Our proof uses deformations of density functions and which are solutions of a “Jacobian
problem”. This allows us to formalize rigorously an idea of A. Görling (Phys. Rev. A 47
(1993) 2783), for Density-Functional Theory in molecular quantum chemistry, by defining
a density functional that takes into account the symmetry of the molecule under study.

1. Introduction

In this paper we are interested in N -representability problems with symmetry
that occur in Density-Functional Theory (DFT) methods, in molecular quantum chem-
istry. DFT was developed in order to find simpler models of the N -electron problem
(see, for instance, [23,26,29,41] for the physical approach and [1,8,15,31,45] for some
mathematical results). For a given N -electron atom or molecule, the problem is to
obtain an approximation of the lowest energy E0 of the system

E0 := inf

{
〈Ψ,HΨ〉, Ψ ∈ H1 ∩ L2

a

(
R3N), ∫ |Ψ|2 = 1

}
,

where H is the Hamiltonian of the molecule:

H = −∆ +
N∑
i=1

v(xi) +
∑

16i<j6N

1
|xi − xj |

(1)
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and where, for x ∈ R3,

v(x) =
P∑
j=1

−Zj
|x− Rj|

. (2)

We have denoted 〈·, ·〉 the scalar product on L2(R3N ), xi ∈ R3 the ith space variable,

L2
a(R3N ) =

∧N
i=1 L

2(R3) (the closed space of antisymmetric and square integrable
wavefunctions), H1 = {Ψ ∈ L2, ∇Ψ ∈ L2}, ∆ the Laplacian on R3N , and in (2) v is
the Coulomb potential created by a finite set of P nuclei at (distinct) positions Rj ∈ R3

and of charge +Zj . In this paper we do not consider the spin variables in order to
simplify the presentation of the results. (For other potentials and spin variables, see [3,
chapter IV].)

Levy [30] and Lieb [31] already obtained a rigorous formalization of DFT. The
key point uses the following N -representability result (initially due to Macke [35], see
also [21,44]): if N > 1 and ρ > 0 is such that

√
ρ ∈ H1(R3), then there exists a

wavefunction Ψ ∈ L2
a(R3N ) ∩H1 such that ρΨ = ρ. We have denoted ρΨ the density

function associated to Ψ:

ρΨ(x) := N

∫
R3(N−1)

∣∣Ψ(x, x2, . . . , xN )
∣∣2 dx2 · · · dxN (3)

(when N > 2) and ρΨ(x) := |Ψ(x)|2 when N = 1. Hence for any ρ > 0 such that√
ρ ∈ H1(R3), we can define the density-functional

E[ρ] := min
{
〈Ψ,HΨ〉, ρΨ = ρ, Ψ ∈ L2

a

(
R3N) ∩H1} (4)

which satisfies

E0 = inf

{
E[ρ], ρ > 0,

√
ρ ∈ H1(R3), ∫

R3
ρ = N

}
.

A general way to construct wavefunctions Ψ such that ρΨ = ρ is given in [5,33], for
instance, and will be also used in the present paper.

One drawback of the above approach is that the symmetries of the molecule are
not taken into account explicitly. In [32] (a revised version of [31]), density-functionals
for excited energies are proposed, but the symmetry is not used. For improvement of
existing density-functionals, or comparison between them, it could help to have a
rigorous definition of a variational exact density-functional including symmetries. In
this paper one aim is to obtain such a variational formulation of DFT.

Precisely, we also search a density-functional for

E0,Γ := inf

{
〈Ψ,HΨ〉, Ψ ∈ Γ ∩H1 ∩ L2

a

(
R3N), ∫ |Ψ|2 = 1

}
,
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where Γ is a given class of symmetry (a subspace of L2(R3N )) associated to the
symmetry group G of the molecule (1)–(2). In this paper G is defined by

G :=
{
Q ∈ O(3), v(Q) = v

}
. (5)

In (5) the center of G is assumed to be at the origin. (See section 3.1 for more
precisions.) We recall that Γ can be different from the symmetry class associated to
the trivial character: if ψ ∈ Γ and Q ∈ G then, in general, Ψ(Qx1, . . . ,QxN ) 6=
Ψ(x1, . . . , xN ). There is a choice of Γ for which E0,Γ is equal to E0; if E0,Γ < 0
then it is an eigenvalue of H (since the nonpositive spectrum of H corresponds to
eigenvalues).

In order to define a density-functional for E0,Γ of the same type as E[ρ] in (4), this
poses the following N -representability problem: find a wavefunction Ψ ∈ L2

a(R3N ) ∩
H1 such that

ρΨ = ρ and Ψ ∈ Γ. (6)

Note that this kind of question appears (more or less implicitly) in more recent DFT
theories for excited states and symmetries. We refer, for instance, to Englisch et al.
(see equations (1) and (2) in [14]) and Görling [18] (see equation (6) therein). In the
theory of Gross et al. [20] (see equation (109)), they use a minimization over density
matrices that yield a given ρ density; but some symmetry assumption should be added
in the set of density matrices in the case of applications, and thus also on the densities.
A similar question occurs when the Kohn–Sham potential is searched through the
minimization of the kinetic energy with a fixed density constraint (quantities such as
Ts[ρ], see equation (112) in [20] or equation (10) in [14]). We refer to [13,19,38] and
references therein for new approaches and problems with symmetry and excited states
calculations in DFT.

Now we remark that (6) has been solved in particular cases. For instance, in [44],
for atoms, ρ is radial and Ψ is searched in the form of a determinantal wavefunction
and in Γ. In the atom case also, more general solutions were obtained in [27,42,45]
using a deformation approach. For a molecule with finite symmetry group a partial
answer to (6) is given in [5] when ρ is “totally symmetric”, i.e., such that

ρ(Qx) = ρ(x) for all Q ∈ G and x ∈ R3,

and when Γ is a class of symmetry of dimension one (which means, in this paper,
that the irreducible representations of Γ are of dimension one: Ψ(Qx1, . . . QxN ) =
λ(Q)Ψ(x1, . . . , xN ); see section 3.1). We do not know solutions when Γ is not of
dimension one, in particular if the symmetry Γ cannot be obtained by determinants.

Of course, solving (6) is not possible in general. For instance, in the atom case
(G = O(3)), if we take ρ to be a nonradial function and if Γ is of dimension one,
then ρΨ is radial for any Ψ ∈ Γ and thus ρΨ 6= ρ. Also, if ρ is a radial function, and
if Ψ ∈ Γ where Γ is not of dimension one, then in general ρΨ will not be a radial
function.
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In this paper we solve an alternate problem. Let µ be the Haar measure of G.
We define ρ̃ as the projection of ρ on the totally symmetric functions, i.e.,

ρ̃(x) :=
1

µ(G)

∫
Q∈G

ρ(Qx) dµ(Q).

Our main result (theorem 2.1) is to show that for any ρ totally symmetric (i.e., ρ̃ = ρ)
and which satisfies, furthermore, some natural physical assumptions (cusp at the nuclei
and exponential fall-off behavior, see definition 2.3), there exists a wavefunction Ψ ∈
L2

a(R3N ) ∩H1 such that

ρ̃Ψ = ρ and Ψ ∈ Γ. (7)

The resolution of (7) is one of the implicit problems posed by Görling in [18] but
not solved (yet in [18] the focus is on spin symmetry problems). Then, following
the approach of Görling, we propose a formalization of DFT similar to Levy–Lieb’s
formalization but that, furthermore, takes into account the spatial symmetries of the
molecule (see theorem 2.3; our density-functional EΓ[ρ] in equation (8) corresponds
to equation (22) in [18]). This approach has also been used implicitly in [34]: when
the authors improve the density function of a basic wavefunction model for Li, B, and
F atoms, they improve (or control) only the radial part of the density function.

Main results are stated in section 2, and proved in section 3. In order to solve (7)
we shall use “deformations” of densities [5,27] as explained in section 3.4. But first,
we shall need to construct a wavefunction Ψ1 ∈ Γ such that ρ̃Ψ1 has good regularities,
does not vanish anywhere, and has other natural behavior properties (section 3.3). This
may appear obvious by hand-waving arguments, still this is one of the mathematical
difficulties of the paper (and not a consequence of [5]). For N = 1 and for an atom
or a diatomic molecule, it is sometime not possible to obtain nonvanishing density
functions ρΨ1 (even after symmetrization – see section 3.7), while there is no such
problem if N > 2.

At the same time, we shall also need to list precisely which symmetry classes Γ
are non-empty, i.e., such that Γ ∩ L2

a(R3N ) 6= {0} (when Γ corresponds to a given
symmetry group and character); this never happens when N > 3, happens once when
N = 2 (in the atom case), and in several cases for N = 1. We were not able to find
this kind of result clearly stated in some textbook. For all these reasons we have to
construct almost explicitly a nonzero wavefunction Ψ ∈ Γ each time this is possible
(this part is mainly algebra). Finally, we shall need some density results (section 3.6)
in order to obtain E0,Γ as an infimum of EΓ[ρ] over symmetric ρ densities.

In a concluding section (section 4) we propose more practical ways to use the
ideas of the paper and give links to recent related works.

The results of the paper can be generalized in order to treat spin symmetries, and
also can be applied to other symmetries (such as in periodic systems [8,9]).
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2. Main results

In this section we give our main results in the setting of molecular quantum
chemistry. We first define a set of density functions for which we can solve (7).

2.1. Definition of H1-admissible density functions

Following physical studies (as in [5]), we may characterize the behavior of the
density functions at the nuclei positions K = {R1, . . . , RP} by cusps conditions [25,40]
and at infinity by an exponential fall-off condition [22,46] as follows. We denote
x = (r,w) in the spherical coordinates (w ∈ S2 and r > 0).

Definition 2.1 (Cusp). We say that ρ :R3 → R+ has a cusp in x = 0 if in the
neighborhood of r = 0,

ρ(r,w) = a+ b(w) r + o(r),

with a > 0 and b ∈ C0(S2,R), and where o(r) is uniform with respect to w ∈ S2.
Similarly, we say that ρ has a cusp in x0 ∈ R3 if ρ(x + x0) has a cusp in x = 0.

Definition 2.2 (Exponential fall-off). We say that ρ :R3 → R+ has an exponential
fall-off at infinity if, when r →∞,

ρ(r,w) = A(w)rβe−αr + o
(
rβe−αr

)
,

where α > 0, β ∈ R, A(w) ∈ C0(S2,R∗+) and o(rβ e−αr) is uniform with respect to
w ∈ S2.

Now we can introduce:

Definition 2.3 (H1-admissible densities). Let G be the point group of a molecular
system with nuclei K. We say that ρ is H1-admissible if:

(i) ρ ∈ C0(R3,R∗+) ∩ C∞(R3\K);

(ii) ρ is totally symmetric (i.e., ρ̃ = ρ);

(iii) ρ has a cusp in each x ∈ K;

(iv) ρ has an exponential fall-off;

(v) (∇ρ)/ρ is bounded.

Note that if ρ is H1-admissible then
√
ρ belongs to H1(R3) (using ∇√ρ/√ρ =

1
2∇ρ/ρ thus bounded).
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2.2. N -representability results

Our main N -representability result is:

Theorem 2.1. Let Γ be a class of symmetry such that Γ ∩ L2
a(R3N ) 6= {0}.

(i) If N > 2 and if ρ is H1-admissible, then ∃Ψ ∈ Γ ∩ L2
a(R3N ) ∩ H1 such that

ρ̃Ψ = ρ.

(ii) If N = 1, ρ > 0, ρ̃ = ρ and ρ ∈ L1(R3), then ∃Ψ ∈ Γ∩L2(R3) such that ρ̃Ψ = ρ.

To prove this theorem, the main problem, in this paper is to find at least one Ψ1

in Γ ∩L2
a(R3N )∩H1 and such that ρ̃Ψ1 be H1-admissible (see section 3.3). Then we

shall use the results of [5] in order to “deform” Ψ1 into a Ψ2 with the same symmetry
and such that ρ̃Ψ2 = ρ (see section 3.4).

We then deduce N -representability results which do not make reference to
H1-admissible density functions.

Corollary 2.1. Let Γ be a class of symmetry such that Γ ∩ L2
a(R3N ) 6= {0}. The

following density results hold:
(i) For N > 2 and for the H1(R3)-topology:{√

ρ̃Ψ, Ψ ∈ H1 ∩ L2
a

(
R3N

)
∩ Γ
}

=
{√

ρ, ρ > 0,
√
ρ ∈ H1(R3), ρ = ρ̃

}
.

(ii) For N > 1 and for the L2(R3)-topology:{√
ρ̃Ψ, Ψ ∈ L2

a

(
R3N

)
∩ Γ
}

=
{√

ρ, ρ > 0, ρ ∈ L1(R3), ρ = ρ̃
}
.

Slightly more general results are given in section 3.7. Note that for N = 1 and
when regularity H1 is required, the above results may be false because of the vanishing
sets of the density functions (see section 3.7).

2.3. Other N -representability results (atoms, linear molecules)

When we do not require the H1-regularity, we can improve the results of corol-
lary 2.1 as follows. We recall that the molecule is called an atom when there is only
one nucleus and a linear molecule when P > 2 and all nuclei are aligned.

Theorem 2.2. Let N > 1 and let Γ be a class of symmetry associated to an atom or
a linear molecule and such that Γ ∩ L2

a(R3N ) 6= {0}.

(i) {ρ̃Ψ, Ψ ∈ Γ ∩ L2
a(R3N )} = {ρ, ρ > 0, ρ ∈ L1(R3), ρ̃ = ρ}.

(ii) Ψ ∈ Γ ∩ L2
a(R3N ) →

√
ρ̃Ψ ∈ {

√
ρ, ρ > 0, ρ ∈ L1(R3), ρ̃ = ρ} is an open map

for the L2-topology.
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In order to prove theorem 2.2 we shall use the technics of [4] where it was
already proved that Ψ ∈ L2

a(R3N ) → √ρΨ ∈ L2(R3,R+) is an open map. This type
of question was first asked by Lieb in [31]. Note that this is still an open problem
from H1 ∩ L2

a(R3N ) onto H1(R3,R+).

2.4. Definition of a density functional with symmetry

Let N > 2. Let Γ be such that Γ∩L2
a(R3N ) 6= {0} (we prove this is always true

except for the atom in one case, see remark 3.3). Using theorem 2.1, we can define
for any ρ H1-admissible:

EΓ[ρ] := inf
{
〈Ψ, HΨ〉, Ψ ∈ Γ ∩ L2

a

(
R3N) ∩H1, ρ̃Ψ = ρ

}
. (8)

We then show, as expected:

Theorem 2.3. Let N > 2 and Γ such that Γ ∩ L2
a(R3N ) 6= {0}. Then EΓ[ρ] is a

minimum, and

E0,Γ = inf

{
EΓ[ρ], ρ H1-admissible,

∫
R3
ρ = N

}
. (9)

Hence EΓ[ρ] is a density functional for E0,Γ. Possible utilizations of this approach
to DFT are discussed in section 4 (see also [34], and also [3, chapter IV], [5,6]).

3. Proofs

3.1. Preliminary definitions

In this section we recall some basic definitions and notations related to the sym-
metry [24,43] and introduce other ones more specific to the paper.

Notation. We identify O(3), the group of orthonormal matrices (QTQ = Id), with the
isometries of R3 that let the origin invariant. SO(3) denotes the rotations of O(3). We
denote Id the identity function (or matrix), I the inversion in R3 (I(x) = −x), U (d)
the unitary matrices of dimension d.

Symmetry group. Let Isom(R3) be the set of isometries of R3. In this paper we
define the symmetry group (or point group) of the molecule associated to H by

G =
{
Q ∈ Isom

(
R3); TQH = HTQ

}
, (10)

where

TQΨ(x1, . . . , xN ) = Ψ(Qx1, . . . ,QxN ). (11)
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Note also that

[H, TQ] =

[(
N∑
i=1

v(xi)

)
, TQ

]
=

(
N∑
i=1

(
v(xi)− v(Qxi)

))
TQ

(where [A,B] = AB −BA). Hence Q ∈ G if and only if v(Q) = v.
Then we recall that there exists x0 ∈ R3 (the center of G) such that ∀Q ∈ G,

Qx0 = x0. Hereafter, we assume that x0 is the origin. Thus G is a subgroup of O(3)
and is equivalently defined by (10) or (5).

Atoms. In the atom case, P = 1 (R1 = 0) and G = O(3). We shall use the spherical
coordinates (r, θ,φ), where r > 0, φ ∈ (0, 2π), and θ ∈ (0,π), related to the Euclidean
coordinates by x = r cos(φ) sin(θ), y = r sin(φ) sin(θ), and z = r cos(θ). Then ρ̃ is
radial and (with dw = sin(θ) dθ dφ):

ρ̃(r) =
1

4π

∫
S2
ρ(r,w) dw.

Linear molecules. When the nuclei are aligned (and P > 2), we can suppose that
(Oz), the z-axis, is confounded with the nuclei axis. We denote SO(2) for the rotations
of z axis, and O(2) for the group generated by SO(2) and a symmetry with respect to
a plane which contains (Oz). We recall that only two situations may occur.

• If the linear molecule is not symmetric with respect to any plane perpendicular to
(Oz), we have G = O(2).

• Otherwise, there exists such a plane of symmetry (and we can assume it contains
the origin), and we then have G = O(2)×{Id, I} (the group generated by O(2) and
the inversion I).

For instance, diatomic molecules (P = 2) are linear molecules. If Z1 6= Z2, then
G = O(2), and if Z1 = Z2, then G = O(2)× {Id, I}.

For linear molecules, we shall use the cylindrical coordinates (r, z,φ) such that
r > 0, φ ∈ (0, 2π), and z ∈ R, and related to the Euclidean coordinates by x =
r cos(φ), y = r sin(φ), and with identical z component.

For G = O(2):

ρ̃(r, z) =
1

2π

∫ 2π

0
ρ(r, z,φ) dφ,

and for G = O(2)× {Id, I}:

ρ̃(r, z) =
1

4π

∫ 2π

0

(
ρ(r, z,φ) + ρ(r,−z,φ)

)
dφ.
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Note. O(3), O(2) and O(2)× {Id, I} are also denoted O∞, C∞v, and D∞h in chem-
istry.

Finite point groups. When the nuclei are not aligned (P > 3), we say that the mole-
cule is nonlinear, and in this case G is finite. If |G| denotes the cardinal of G, then

ρ̃(x) =
1
|G|

∑
Q∈G

ρ(Qx).

Classes of symmetry. We recall that there exists a Hilbert decomposition of L2(R3N )
into classes of symmetry associated to the unitary representation Q ∈ G → (TQ)−1

(see (11)). Each class of symmetry Γ = Γ(χ) can be defined by a character χ :G→ C
as follows:

Γ(χ) :=
{

Ψ ∈ L2(R3N), PχΨ = Ψ
}

,

where Pχ is the orthogonal projector on Γ, i.e.,

PχΨ :=
d

µ(G)

∫
Q∈G

dµ(Q)χ(Q)TQΨ

and where d ∈ N∗ is the dimension of any irreducible unitary matrix representation
Q ∈ G→M (Q) ∈ U (d) such that ∀Q ∈ G, Tr(M (Q)) = χ(Q).

If PχΨ = Ψ but Ψ is not in L2, we shall still say that Ψ is of symmetry Γ.
The classes of symmetry Γ = Γ(χ) such that Γ ∩ L2

a(R3N ) 6= {0} will be listed
in section 3.3.

Dimension of a class of symmetry. In this paper we also denote d = dim(Γ) and say
that d is the dimension of Γ (or χ). For instance, if Γ = Γ(χ) and dim(Γ) = 1, we
know that Ψ ∈ Γ if and only if Ψ ∈ L2(R3N ) and ∀Q ∈ G, TQΨ = χ(Q)Ψ (and in
this case ρ̃Ψ = ρΨ).

Operator AN and Slater determinants. Let SN be the set of permutations of
{1, . . . ,N}. The operator AN is defined from L2(R3N ) into L2

a(R3N ) by

AN [Ψ] (x1, . . . , xN ) :=
1√
N !

∑
σ∈SN

ε(σ)Ψ(xσ(1) , . . . , xσ(N )) (12)

where ε(σ) is the signature of the permutation σ.
We say that Ψ :R3N → C is a Slater determinant when it is of the form

Ψ = AN
[
φ1(x1) · · ·φN (xN )

]
(13)

(we also denote Ψ = AN [φ1 · · · φN ]), and recall that if the set (φi) is orthonormal in
L2(R3) then ρΨ =

∑N
i=1 |φi|2.
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3.2. Preliminary results

We first establish some useful elementary inclusions and density results.

Proposition 3.1. (i)
√
ρ→

√
ρ̃ is 1-Lipschitz on L2(R3,R+).

(ii)
√
ρ→

√
ρ̃ is continuous for the H1 norm, and∥∥∇√ρ̃∥∥2 6 ‖∇

√
ρ‖2.

Proof. (i) We have ‖
√
ρ̃2−

√
ρ̃1‖2

2 =
∫

(ρ̃2+ρ̃1−2
√
ρ̃1
√
ρ̃2). By Schwarz inequality

on L2(G, dµ),

√̃
ρ1ρ2 6

√
ρ̃1

√
ρ̃2.

We have also
∫
ρ =

∫
ρ̃, thus∥∥√ρ̃2 −
√
ρ̃1
∥∥2

2 6
∫
R3
ρ̃2 + ρ̃1 − 2

√
ρ1ρ2 = ‖√ρ2 −

√
ρ1‖2

2.

(ii) We must take care of the points where the density functions may vanish.
Let A = {x ∈ R3, ρ(x) = 0}. We recall that if

√
ρ ∈ H1, then ∇ρ ∈ L1 with

∇ρ = 2
√
ρ (∇√ρ), ∇√ρ = 1

2 (∇ρ)/
√
ρ a.e. on R3\A and ∇√ρ = 0 a.e. on A.

First we show that
√
ρ ∈ H1 =⇒

√
ρ̃ ∈ H1 and with the bound ‖∇

√
ρ̃ ‖2 6

‖∇√ρ‖2. Note that it suffices to obtain the bound for a regular ρ such that ρ > 0 and√
ρ ∈ H1 (then use density results). In fact we have, a.e. on R3:∣∣∇√ρ̃ ∣∣2 6 ˜∣∣∇√ρ∣∣2. (14)

To see this, write∇ρ̃ = ∇̃ρ = 2 ˜√ρ(∇√ρ). Then, by Schwarz inequality on L2(G, dµ),

|∇ρ̃ |2 6 4 ˜|∇√ρ|2 ρ̃. Also, 4ρ̃ |∇
√
ρ̃ |2 = |∇ρ̃ |2, and we obtain (14).

To prove the continuity of
√
ρ→

√
ρ̃ on H1(R3), let ρn > 0 be a sequence such

that
√
ρn−−−→

n→∞
√
ρ in H1. We already have

√
ρ̃n →

√
ρ̃ in L2 because of (i). Then,

it suffices to show that from any subsequence of
√
ρ̃n we can extract a subsequence

that converges in H1(R3) to the same
√
ρ̃. After a change in the indices, we just have

to prove that there exists a subsequence of ∇
√
ρ̃n that converges to ∇

√
ρ̃ in L2.

We can suppose, after extraction, that ∇√ρn is a.e. convergent and dominated
by a g ∈ L2(R3), with g > 0, and that

√
ρ̃n is also a.e. convergent to

√
ρ̃ (because√

ρ̃n →
√
ρ̃ in L2(R3)). Using the bound in equation (14), we obtain |∇

√
ρ̃n|2 6

˜|∇√ρn|2 6 g̃2. Thus, |∇
√
ρ̃n| is dominated by

√
g̃2 in L2(R3). In order to conclude

by Lebesgue’s domination theorem, we want to obtain that ∇
√
ρ̃n is a.e. convergent

towards ∇
√
ρ̃.
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In the case ρ̃(x) > 0, we have ρn(x) > 0 for n large enough. So ∇
√
ρ̃n(x) =

1
2 (∇ρ̃n)(x)/

√
ρ̃n(x) converges towards 1

2(∇ρ̃ )(x)/
√
ρ̃(x) = ∇

√
ρ̃.

In the other case, let B = {x ∈ R3, ρ̃(x) = 0} (for a representative of ρ̃ ). We
know that ∇

√
ρ̃ = 0 on B (because ∇

√
ρ̃ ∈ H1). In order to show that ∇

√
ρ̃n → 0

a.e. on B, it suffices to show that un =
∫
B |∇

√
ρ̃n|2 → 0 (then, we obtain the

result by extraction). But un 6 vn =
∫
B
˜|∇√ρn|2. We have also ∇√ρn → ∇

√
ρ

in L2, so |∇√ρn|2 → |∇
√
ρ|2 in L1, and thus ˜|∇√ρn|2 → ˜|∇√ρ|2 in L1. Thus

vn → v =
∫
B
˜|∇√ρ|2. We know also that a.e. (x,Q) ∈ B × G (for the measure

dx⊗dµ), we have ρ̃(x) = 0, so ρ(Qx) = 0, and also (∇√ρ)(Qx) = 0. Thus a.e. on B,

|̃∇√ρ| = 0, so v = 0 and lim(un) = 0. This concludes the proof. �

Corollary 3.1. (i) Ψ ∈ L2
a(R3N )→

√
ρ̃Ψ ∈ L2(R3) is 1-Lipschitz.

(ii) Ψ ∈ H1
a (R3N )→

√
ρ̃Ψ ∈ H1(R3) is continuous.

Proof. We recall that Ψ ∈ L2
a(R3N ) → √

ρΨ ∈ L2(R3) is 1-Lipschitz, and that
Ψ ∈ H1

a (R3N )→√ρΨ ∈ H1(R3) is a continuous mapping [31]. Hence the result is a
corollary of proposition 3.1. �

Definition 3.1. Now we introduce the following sets:

D0(Γ) :=
{√

ρ̃Ψ, Ψ ∈ Γ ∩ L2
a

(
R3N)},

D1(Γ) :=
{√

ρ̃Ψ, Ψ ∈ Γ ∩ L2
a

(
R3N) ∩H1},

D0 :=
{√

ρ, ρ > 0,
√
ρ ∈ L2(R3), ρ = ρ̃

}
,

D1 :=
{√

ρ, ρ > 0,
√
ρ ∈ H1(R3), ρ̃ = ρ

}
.

Then, using corollary 3.1 we obtain:

Remark 3.1. D0(Γ) ⊂ D0 and D1(Γ) ⊂ D1 are continuous embeddings.

Also, elementary verifications give:

Lemma 3.1. (i) For the L2-norm, {
√
ρ, ρ H1-admissible} = D0.

(ii) For the H1-norm, {
√
ρ, ρ H1-admissible} = D1.

3.3. Existence of a Ψ ∈ Γ such that ρ̃Ψ be H1-admissible

This section is mainly devoted to prove the following proposition.

Proposition 3.2. Let Γ be a class of symmetry such that Γ ∩ L2
a(R3N ) 6= {0}.

(i) For N > 1, ∃Ψ ∈ Γ ∩ L2
a(R3N ) such that ρ̃Ψ be H1-admissible.
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(ii) For N > 2, ∃Ψ ∈ Γ ∩ L2
a(R3N ) ∩ H1 such that ρ̃Ψ be H1-admissible. (When

N = 1, (ii) also holds for G = O(3) and G = O(2).)

At the same time, we shall obtain the following result that will be used in sec-
tion 3.6.

Remark 3.2. The wavefunction Ψ in proposition 3.2 can be obtained in the following
form:

Ψ = AN
[
Φ(w1, . . . ,wp)φ1(r1) · · · φN (rN )

]
,

where Φ ∈ C∞((S2)p) and is of symmetry Γ,
∫

(S2)p |Φ|2 = (4π)p, Φ a.e. 6= 0, and

such that for any orthonormal set (φi) of L2(R3) of radial functions:
(i) ρ̃Ψ =

∑N
i=1 |φi|2 for atoms and linear molecules (with p 6 3),

(ii) ρ̃Ψ(r,w) = ˜|Φ(w)|2 |φ1(r)|2 + (
∑N

i=2 |φi(r)|2) for nonlinear molecules (with
p = 1).

3.3.1. Proof of proposition 3.2 in the case G is finite
We first show in lemma 3.3 that, for N = 1, we always have Γ 6= {0}. We first

need the following lemma which states the existence of a subdivision of R3 into |G|
cones Ωj such that G acts transitively on {Ωj , 1 6 j 6 g} (see also [2, chapter 1]).

Lemma 3.2. Let G be finite and g = |G| its cardinal. There exists {Ωj}16j6g convex
and disjoint open cones of R3, centered at the origin, and such that:

(i) R3\
⋃g
j=1 Ωj is included in a finite union of planes of R3,

(ii) ∀Q ∈ G, ∀i, ∃j, QΩi = Ωj ,

(iii) ∀Q ∈ G, ∀i, QΩi = Ωi ⇒ Q = Id.

Proof. The proof is left to the reader. It can be obtained by graphical arguments and
going through all the possible finite subgroups of O(3) (for a review of such groups,
see [28, p. 416]). �

Lemma 3.3. Let G be a finite subgroup of O(3), N = 1, χ a character. Then
Γ = Γ(χ) is not reduced to {0}. More precisely:

(i) ∀ρ ∈ L1(R3,R+) such that ρ̃ = ρ, ∃Ψ ∈ Γ, ρ̃Ψ = ρ.

(ii) ∃Φ ∈ C∞(S2), Φ of symmetry Γ and Φ(w) 6= 0 a.e.

(iii) ∃Ψ ∈ Γ ∩ C∞(R3), Ψ 6= 0 and Ψ of compact support.

Proof. (i) Let d = dim(Γ) and let f be the function such that f (x) =
√
d ρ(x) for

x ∈ Ω1 and f (x) = 0 for x /∈ Ω1. Let Q ∈ G → M (Q) ∈ U (d) be an irreducible
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matrix representation associated to χ (i.e., χ(Q) =
∑

i=1,dmii(Q)). Let Ψij(x) =∑
Q∈Gmij(Q)f (Qx).

We recall that Ψij ∈ Γ, and that ∀Q ∈ G, TQΨik =
∑d

j=1mij(Q)Ψjk (using
M (PQ) = M (P )M (Q) for P ,Q in G). We use this for i = k = 1 and obtain, by

a classical calculation, ρ̃Ψ11 = |̃Ψ11|2 = (1/d)
∑d

j=1 |Ψj1|2. Furthermore, if x ∈ Ω1,
then Ψj1(x) = δj1f (x) because M (Id) = Id and for Q 6= Id, QΩ1 ∩ Ω1 = ∅ (use
lemma 3.2). So ρ̃Ψ11(x) = ρ(x) on Ω1. Since ρ̃Ψ11 and ρ are totally symmetric, we
obtain ρ̃Ψ11 = ρ on R3 (use lemma 3.2).

(ii) We follow the proof of (i) but using f (w) ∈ C∞(S2), with f (w) > 0 for
x = (1,w) ∈ Ω1, and supp(f ) = Ω1∩S2. We obtain Φ = Ψ11 ∈ C∞(S2), of symmetry
Γ, and also, Φ(w) = f (w) 6= 0 for x = (1,w) ∈ Ω1, so Φ(w) 6= 0 on Ω1∩S2. In order
to obtain Φ(w) a.e. 6= 0, we may consider a sum of such functions (using functions f
with different supports).

(iii) It suffices to take Ψ(r,w) = g(r)Φ(w), where Φ is the solution of (ii) and g
is radial, regular and of compact support. �

Now we finish the proof of proposition 3.2 in the case |G| is finite. If N = 1, we
obtain (i) as a consequence of lemma 3.3 (i). Then, for N > 2, it suffices to prove (ii).
To this end, we consider the Slater determinant Ψ = AN [φ1 · · ·φN−1 (φNΦ)] with
φ1 = c e−r (where c is a normalization factor), and where (φ2, . . . ,φN ) are radial and
regular functions with compact support, such that (φj)16j6N is an orthonormal set
in L2(R3), and Φ ∈ C∞(S2) as in lemma 3.3 (ii) and such that

∫
S2 |Φ|2 = 4π. So

(φ1, . . . ,φN−1,φNΦ) is also an orthonormal set. Hence Ψ ∈ Γ∩H1 and, in spherical
coordinates,

ρ̃Ψ(r,w) =

(
N−1∑
j=1

∣∣φj(r)
∣∣2)+

∣∣φN (r)
∣∣2 × ˜∣∣Φ(w)

∣∣2.
When r → ∞, ρ̃Ψ(r) = |φ1(r)|2 = c2 e−2r. Also, ρ̃Ψ(r) > |φ1(r)|2 > 0. Thus ρ̃Ψ is
H1-admissible, which concludes the proof for G finite.

3.3.2. Proof of proposition 3.2, case G = O(3).
In table 1, we recall the character tables of SO(3) and O(3) = SO(3)×{Id, I}. We

have listed the character values for Id, Rθ (a rotation of angle θ) and of the inversion
I , and we have denoted

χ`(Rθ) =
sin[(2`+ 1)θ/2]

sin(θ/2)
for ` ∈ N.

Table 1
Character tables for SO(3) and O(3) (or O∞).

SO(3) Id Rθ O(3) Id Rθ I

Γ` 2`+ 1 χ`(Rθ) Γ+
` 2`+ 1 χ`(Rθ) 1

Γ−` 2`+ 1 χ`(Rθ) −1
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Thus for G = O(3), for each ` ∈ N, there exist exactly two characters χ+
` and

χ−` , of dimension (2` + 1), defined by χε`(Rθ) = χ`(Rθ) and χε`(I Rθ) = εχ`(Rθ)
(ε = ±1). We denote Γε` = Γ(χε`) the corresponding class of symmetry (it is a
subspace of L2(R3N )), and ε is called the parity of Γε` . In particular, if Ψ ∈ Γε` then
Ψ(−x) = εΨ(x).

In the following lemma, we list the cases when the space Γε` ∩ L2
a(R3N ) is not

reduced to {0}, construct a wavefunction Ψ in this space and calculate its density
function ρΨ.

Lemma 3.4. Let G = O(3), ` ∈ N, ε = ±1, and Γ = Γε` .

(i) When N = 1, Γε` ∩ L2
a(R3N ) 6= {0} if and only if ε = (−1)`.

(ii) When N = 2, Γε` ∩ L2
a(R3N ) 6= {0} if and only if Γ 6= Γ−0 .

(iii) When N > 3, Γε` ∩ L2
a(R3N ) 6= {0}.

(iv) In all cases, if Γε` ∩ L2
a(R3N ) 6= {0}, then ∃Ψ ∈ Γ ∩ L2

a(R3N ) of the form

Ψ = AN
[
Φ(w1, . . . ,wp)φ1(r1) · · ·φN (rN )

]
, (15)

where p 6 3, Φ ∈ C∞((S2)p), Φ(x) a.e. 6= 0, and where the (φi) can be any
radial functions of L2(R3).

(v) If Φ ∈ L2((S2)p) is such that
∫

(S2)p |Φ|2 = (4π)p, if φ1, . . . ,φN is an orthonormal

set of radial functions in L2(R3), then for Ψ as in (15):

ρ̃Ψ(r) =
N∑
j=1

|φj(r)|2.

Proof. (i) is immediate because on L2(S2), there is only one class of symmetry of
dimension 2` + 1, spanned by the spherical harmonics (Y`m), m ∈ [−`, `], and of
parity ε = (−1)` (see [28]). Then we can take Ψ = Y`mφ with φ a radial function.

Thus for N > 1, when ε = (−1)`, it is easy to conclude Γε` 6= {0} and to prove
(iv), using a function of the form Ψ = AN [Y`m(w1)φ1(r1) · · · φN (rN )]. But for the
general case we need other arguments.

(ii) Case ` = 0. Γ+
0 6= {0} is obtained using Ψ = A2[φ1 φ2], φi radial and

orthonormal in L2(R3). Also, Γ−0 = {0}, because if Ψ ∈ Γ−0 , then note that Ψ is of
the form Ψ = Ψ1(r1, r2, r12) where ri = |xi| and r12 = |x1 − x2| (use the invariance
by rotations). On the other hand, Ψ(−x1,−x2) = −Ψ(x1, x2) and therefore Ψ = 0.

Case ` > 1. We recall that given two non-negative integers `2 > `1, the following
decomposition holds (see [24]):

D(1)
`1
⊗D(1)

`2
= D(2)

`2−`1
⊕D(2)

`2−`1+1 ⊕ · · · ⊕D
(2)
`2+`1

. (16)

We have denoted D(1)
`1
⊗D(1)

`2
the subspace of L2(S2 × S2) spanned by the (2`1 + 1)

× (2`2 + 1) functions Y`1 i(w1)Y`2 j(w2), and D(2)
` are some subspaces of L2(S2×S2),
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of dimension 2`+ 1 (thus non-empty), of symmetry Γε` where ε = (−1)`1+`2 (because
it is the parity of the functions of D(1)

`1
⊗D(1)

`2
).

If ε = 1, we take `1 = `2 = ` in (16). We have ` ∈ [0, 2`], therefore there
appears a D(2)

` in (16), and it is of parity (−1)2` = 1.
If ε = −1, and ` > 1, we take `1 = ` and `2 = `+ 1. Since ` > 1, we still have

` ∈ [1, 2`+ 1] and we obtain now a D(2)
` of parity −1.

In all cases, we choose Φ ∈ D(2)
` so that Φ ∈ L2(S2 × S2), Φ 6= 0, and of

symmetry Γε` . Finally we can take Ψ = A2[Φ(w1,w2)φ1(r1)φ2(r2)], where (φi) are
radial functions, and orthonormal in L2(R3). So Ψ 6= 0, Ψ ∈ L2

a(R3 × R3), and
Ψ ∈ Γε` .

(iii) Case N > 3. If Γ 6= Γ−0 , we know from the study of (ii) that there exists
Φ ∈ L2((S2)2), normalized and of symmetry Γ. We then extend Φ on L2((S2)3) by
Φ(w1,w2,w3) = Φ(w1,w2).

If Γ = Γ−0 , for N = 3 we define on (S2)3: Φ(w1,w2,w3) = det(x1, x2, x3), where
xi is the vector (1,wi). Thus Φ is of symmetry Γ−0 .

In all cases, we have obtained Φ ∈ C∞((S2)p) (with p 6 3), Φ 6= 0 and of
symmetry Γ.

Then let be N radial functions φ1, . . . ,φN , orthonormal in L2(R3), and consider
Ψ as in (15). Note that Ψ ∈ Γ is straightforward, and also Ψ 6= 0 (for instance using
(v)).

(iv) Follows from (i), (ii) and (iii). In fact, we have obtained, furthermore, Φ
6= 0 a.e. on (S2)p, because otherwise Φ is an analytical function which would vanish
on a set of positive measure, so we would have Φ ≡ 0.

(v) For simplicity of presentation, we prove only the case p = 2. Note that if
σ ∈ SN , then

∏N
j=1 φj(rσ(j)) =

∏N
j=1 φσ−1(j)(rj). So up to a change of σ into σ−1,

and if we denote ri = |xi| and wi = xi/ri ∈ S2, we obtain

Ψ =
1√
N !

∑
σ∈SN

ε(σ) Φ(wσ−1(1),wσ−1(2))
N∏
j=1

φσ(j)(rj).

Then

ρ̃Ψ =
N

4π

∫
(S2)N

dw1 · · · dwNI , (17)

where

I =

∫
[0,∞]N−1

r2
2 dr2 · · · r2

N drN |Ψ|2

=
1
N !

∑
σ,τ∈SN

ε(σ)ε(τ ) Φ(wσ−1(1),wσ−1(2))Φ(wτ−1(1),wτ−1(2))

× φσ(1)(r1)φτ (1)(r1)
N∏
j=2

(
1

4π
〈φσ(j),φτ (j)〉

)
. (18)



286 O. Bokanowski / New N-representability results

Since 〈φi,φj〉 = δij , the only nonvanishing terms in (18) are obtained when σ(j) =
τ (j), ∀j = 2, . . . ,N , and thus only when σ = τ . Therefore,

I =
1
N !

1
(4π)N−1

∑
σ∈SN

∣∣Φ(wσ−1(1),wσ−1(2))
∣∣2 ∣∣φσ(1)(r1)

∣∣2. (19)

If we introduce (19) into (17) and use
∫

(S2)2 |Φ|2 = (4π)2, we obtain

ρ̃Ψ(r1) =
1

(N − 1)!

∑
σ∈SN

∣∣φσ(1)(r1)
∣∣2 =

N∑
j=1

∣∣φj(r1)
∣∣2. �

Now we can conclude the proof of proposition 3.2 for G = O(3). Since Γ∩L2
a(R3N ) 6=

{0}, by lemma 3.4 we can take Ψ as in equation (15). Then using (v) we obtain
ρ̃Ψ =

∑N
j=1 |φj |2 for any set of N radial and orthonormal functions (φj) in L2(R3).

We can choose (φj) such that furthermore Ψ ∈ H1 and ρ̃Ψ be H1-admissible. This
concludes the proof.

3.3.3. Proof of proposition 3.2 in the case of linear molecules
We list the classes of symmetry and see which ones are not reduced to {0};

the results are summarized in the character tables (tables 2 and 3) and in lemma 3.5.
This lemma, and the proof of proposition 3.2 in the linear case, can be proved using
arguments of the same type as in the atom case (this is left to the reader).

To the left in tables 2 and 3, we have listed the classes of symmetry, and we
recall the corresponding character values. We have denoted Cθ the rotation φ→ φ+θ,
and σ the symmetry φ → −φ (in the cylindrical coordinates (r, z,φ)). To the right,
the columns N = 1 and N = 2 contain an example of a function in Γ ∩ L2

a(R3N ) in
the case Γ ∩ L2

a(R3N ) 6= {0}, otherwise contains “0” (so Γ ∩ L2
a(R3N ) 6= {0} as soon

as N > 2).
For O(2), in table 2, we see three different types of classes of symmetry: ΓA1

and ΓA2 , of dimension one, and the classes of dimension two, ΓEk (with k ∈ N∗). We
have denoted ψ0 a function of L2(R3) such that ψ0(x) = ψ0(r, z), i.e., that does not
depend of the cylindrical coordinate φ.

For G = O(2) × {Id, I}, in table 3, we have denoted by ε = ± the parity of Γ
(ε = χ(I) for Γ = Γ(χ)). Also, in table 3, ψ0 and ψ1 are two functions of L2(R3) which
are φ-independent and such that ψ1(r,−z) = −ψ1(r, z) and ψ0(r,−z) = ψ0(r, z) (and
A2 is the operator AN for N = 2, see (12)).

Table 2
Character tables for O(2) (or C∞v).

O(2) Id Cθ σ N = 1 N = 2

ΓA1 1 1 1 ψ0

ΓA2 1 1 −1 0 ψ0(x1)ψ0(x2) sin(φ1 − φ2)
ΓEk 2 2 cos(kθ) 0 ψ0eikφ



O. Bokanowski / New N-representability results 287

Table 3
Character tables for O(2)× {Id, I} (or D∞h).

O(2)× {Id, I} Id Cθ σ I N = 1 N = 2

Γ+
A1

1 1 1 1 ψ0

Γ−A1
1 1 1 −1 ψ1

Γ+
A2

1 1 −1 1 {0} ψ0(x1)ψ0(x2) sin(φ1 − φ2)
Γ−A2

1 1 −1 −1 {0} ψ1(x1)ψ0(x2)− ψ0(x1)ψ1(x2)
Γ+
Ek

2 2 cos(kθ) 0 1 ψ0eikφ

Γ−Ek 2 2 cos(kθ) 0 −1 ψ1eikφ

Lemma 3.5. Let G = O(2)× {Id, I} or G = O(2), and Γ a class of symmetry.

(i) For N > 2, Γ ∩ L2
a(R3N ) 6= {0}.

(ii) For N = 1, we have Γ 6= {0} except for Γ = ΓA2, Γ+
A2

, or Γ−A2
.

(iii) If N > 2, then there exists Ψ in Γ ∩ L2
a(R3N ) of the following form:

Ψ = AN
[
Φ(φ1,φ2)ψ1(r1, z1) · · ·ψN (rN , zN )

]
, (20)

where Φ ∈ C∞((S1)2), Φ 6= 0, a.e. and where the (ψi) can be any functions of
the form ψi = ψi(r, z) (and furthermore, if G = O(2) × {Id, I} and if Γ is of
parity ε, with ψ1(r,−z) = εψ1(r, z) and ψi(r,−z) = ψi(r, z) for i > 2).

(iv) If
∫

(S1)2 |Φ|2 = (2π)2 and the ψj are orthonormal, then for Ψ as in (20):

ρ̃Ψ(r, z) =
N∑
j=1

∣∣ψj(r, z)
∣∣2.

To conclude, note that the results of this section imply also the following:

Remark 3.3. If N > 2 then Γ ∩ L2
a(R3N ) ∩ H1 6= {0} except in one case: when

N = 2, G = O(3) (atom) and with Γ = Γ−0 .

3.4. Proof of theorem 2.1 and corollary 2.1

Note that corollary 2.1 will be a consequence of theorem 2.1 and of lemma 3.1.
Thus we have only to prove theorem 2.1. Also, we only prove part (i) because the
second part (ii) can be obtained using the same method.

First, using proposition 3.2, we obtain the existence of a Ψ1 ∈ Γ∩L2
a(R3N )∩H1

such that ρ̃Ψ1 be H1-admissible. The idea is then “to deform Ψ1 into a Ψ2” such
that ρ̃Ψ2 = ρ. We proceed as in [5] and introduce the following unitary operator on
L2

a(R3N ):

(TfΨ)(x1, . . . , xN ) =

(
N∏
i=1

Jf(xi)

)1/2

Ψ
(
f(x1), . . . , f(xN )

)
, (21)
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where Jf = | det(∂fi/∂xj )| is the absolute value of the Jacobian determinant of f
(for a regular f). Using the change of variable formula one can obtain the following
fundamental property of Tf:

if Ψ2 = TfΨ1 then ρΨ2 = f ∗ ρΨ1 , (22)

where we have denoted

(f ∗ ρ)(x) := Jf(x) ρ
(
f(x)
)
.

Note. f ∗ ρ represents the density ρ “deformed” by f.

We also need the following definition:

Definition 3.2. We say that f :R3 → R3 is symmetric if

∀Q ∈ G, f(Q) = Q(f).

Note that in [5] it was proved that if f is symmetric then Tf(Γ) ⊂ Γ. Also, we
recall that using a combination of results of [5], we have obtained a constructive proof
for the following

Theorem 3.1. If ρ1 and ρ2 are two H1-admissible density functions such that
∫
ρ1 =∫

ρ2, then there exists a C1(R3)-diffeomorphism f such that:

(i) ρ2 = f ∗ ρ1,

(ii) f is symmetric,

(iii) Tf(H1) ⊂ H1,

(iv) f(Rj) = Rj for j = 1, . . . ,P ,

(v) Df = (∂fi/∂xj) is bounded on R3.

Note. Solving ρ2 = f ∗ ρ1 (for given densities ρ1, ρ2) is known as the Jacobian
problem [12,37]. Although in [5] theorem 3.1 was only stated for nonlinear molecules
(and atoms), it can be checked that it still holds for linear molecules.

Now let Ψ2 = TfΨ1 where f is a solution of ρ = f ∗ ρ̃Ψ1 as in the above theorem.
(By changing Ψ1 by a constant factor, we can always suppose

∫
ρ =

∫
ρ̃Ψ1 .) We have

also ρΨ2 = f ∗ ρΨ1 using (22).
Since f is symmetric, note that Jf(Qx) = Jf(x) for Q ∈ G. Hence ρ̃Ψ2 = f∗ρ̃Ψ1 =

ρ. Furthermore, Ψ2 ∈ Γ ∩H1 using theorem 3.1, (ii) and (iii). Finally, Ψ = Ψ2 is a
solution of our problem.
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3.5. Proof of theorem 2.2

Let us introduce the following natural extension of a Jacobian problem, i.e., via
a change of variable formula.

Definition 3.3. Let ρi be in L1(R3,R+) and let f :R3 → R3 be a measurable function.
We say that f solves the Jacobian problem ρ2 = f ∗ ρ1 in the measure sense, if, for
any measurable u :R3 → R+ (bounded),∫

R3
u(f)ρ2 =

∫
R3
uρ1.

We first establish the existence of symmetric solutions for the Jacobian problem,
as in [4], but here in the measure sense (see below, and see also [17,39] for funda-
mental results without symmetry). We were not able to extend this result to nonlinear
molecules.

Theorem 3.2. Let G be the point group of an atom or a linear molecule. Let ρ1, ρ2

be in L1(R3,R+), totally symmetric, with ρ1 > 0 (almost everywhere), and such that∫
ρ1 =

∫
ρ2. Then there exists a measurable f :R3 → R3, symmetric (see defini-

tion 3.2) and solution of ρ2 = f ∗ ρ1 in the measure sense.

Proof. In the atom case, the density functions are radial and there is a solution of
the form f = f (r) ur (with ur = x/r and r = |x|), where f (r) is defined by (see [4,
section V]) ∫ f (r)

0
t2ρ1(t) dt =

∫ r

0
t2ρ2(t) dt.

In the linear case, we proceed as in [4, section V], but using the cylindrical
coordinates (r, z,φ) ∈ R+ × R× (0, 2π). The correspondence with the Euclidean co-
ordinates (x, y, z) = G(r, z,φ) is defined by x = r cos(φ) and y = r sin(φ). We denote
ρi = ρi(r, z) the density functions (they are totally symmetric, so are φ-independent).
Let C =

∫
ρi for i = 1, 2. We have

∫∞
0

∫∞
−∞ dr dz rρi(r, z) = 2π/C.

Then we solve ρi = fi ∗ C (i.e., Jfi = ρi/C) in the measure sense, as follows.
First, a solution of Jgi = rρi(r, z)/C is given by

gi,r(r) = 2πC−1
∫ r

0

∫∞
−∞ r

′ρi
(
r′, z′

)
dr′ dz′,

gi,z(r, z) =
∫ z
−∞ ρi

(
r, z′

)
dz′ ×

( ∫∞
−∞ ρi

(
r, z′

)
dz′
)−1

,

gi,φ(φ) = (2π)−1φ.

Then we define fi by gi = fi(G). The case of vanishing density functions is in fact not
important in the definition of gi (except for inversion, see [4]). Finally, f = f−1

1 (f2)
solves ρ2 = f ∗ ρ1 in the measure sense.
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Now we must check that f is symmetric. Note that in cylindrical coordinates, f
is represented by g = g−1

1 (g2) and thus is of the form (r, z,φ) → (rg(r), zg(r, z),φ),
where (rg, zg) are implicitly defined by∫ rg

0

∫ ∞
−∞

r′ρ1
(
r′, z′

)
dr′ dz′ =

∫ r

0

∫ ∞
−∞

r′ρ2
(
r′, z′

)
dr′ dz′

and ∫ zg
−∞ ρ1(rg, z′) dz′∫∞
−∞ ρ1(rg, z′) dz′

=

∫ z
−∞ ρ2(r, z′) dz′∫∞
−∞ ρ2(r, z′) dz′

.

Hence, g is symmetric in the case G = O(2).
If G = O(2) × {Id, I}, we have to check furthermore that rg(r,−z) = rg(r, z)

and zg(r,−z) = −rg(r, z). This is a simple verification using the fact that in this case
ρi(r,−z) = ρi(r, z), which concludes the proof. �

Now we come to the proof of theorem 2.2. To prove (i), let ρ ∈ D0 (see
definition 3.1) be such that

∫
ρ > 0. We look for Ψ ∈ Γ∩L2

a(R3N ) such that ρ̃Ψ = ρ.
First, we choose Ψ1 ∈ Γ ∩ L2

a(R3N ) such that ρ̃Ψ1 > 0 a.e. on R3 (proposition 3.2).
Let ρ1 = ρ̃Ψ1 . We can also modify Ψ1 such that

∫
ρ1 =

∫
ρ. By theorem 3.2 there

exists f symmetric, solution of ρ = f ∗ ρ1 in the measure sense. We define Ψ = TfΨ1

(where Jf = ρ/ρ1(f)) and obtain Ψ ∈ Γ ∩ L2
a(R3N ) and ρ̃Ψ = ρ (see [4]).

To prove (ii), i.e., the openness of the map Ψ→√ρΨ, we adapt the proof of [4].
We recall that it is equivalent to show the following. Given Ψ ∈ Γ∩L2

a(R3N ), ρ = ρ̃Ψ
and ρn ∈ D0 a sequence such that

√
ρn →

√
ρ in L2(R3), find a sequence (Ψn)

of L2
a(R3N ) such that Ψn ∈ Γ, ρ̃Ψn = ρn, and Ψn → Ψ in L2. For simplicity of

presentation we suppose
∫
ρn = N for all n.

We keep the constructions used in the proof of theorem 3.2, and we denote f[ρi]
our solution of Jf = ρi/N . Note that as in proposition 3.1 and theorem 3.1 of [4] we
can obtain that if Tf[ρ] is defined as in equation (21) (except that Jf[ρ] must be replaced
by ρ/N ), then Tf[ρ] is a unitary operator from

∧N
i=1 L

2((0, 1)3) onto Kρ defined by

Kρ =
{

Ψ ∈ L2
a

(
R3N); (ρ(x) = 0

)
⇒
(
ρΨ(x) = 0

)
a.e.
}

(for given representatives of ρ and ρΨ). In order to stay in L2
a(R3N ), we introduce

the density function ρ0(x) = ae−r−|z| (i.e., totally symmetric and > 0), where a > 0
is such that

∫
ρ0 = N , and define f[ρ0] and Tf[ρ0] in the same way. We obtain that

U (ρ) = Tf[ρ](Tf[ρ0])−1 = Tf[ρ0]−1◦f[ρ] is a unitary operator from L2
a(R3N ) onto Kρ.

In particular, for ρ = ρ̃Ψ we see that ρ = 0 =⇒ ρΨ = 0 (a.e. on R3), and thus
there exists Φ ∈ L2

a(R3N ) such that Ψ = U (ρ)Φ. Then we define Ψn = U (ρn)Φ.
Let us check that Ψn is a solution of our problem. First note that U (ρ) = Tf

and U (ρn) = Tfn where f = f[ρ0]−1 ◦ f[ρ] and fn = f[ρ0]−1 ◦ f[ρn]. By construction,
f and fn are symmetric and solve ρ = f ∗ ρ0 and ρn = fn ∗ ρ0 in the measure sense.
Also, ρΨn = fn ∗ρΦ in the measure sense. Thus ρ̃Ψn = fn ∗ρ0 = ρn. Note that Φ ∈ Γ
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because Ψ ∈ Γ and U (ρ)−1 = (Tf)−1 keeps the symmetry (using that f is symmetric).
Also, Ψn ∈ Γ because U (ρn) = Tfn keeps the symmetry (since fn is symmetric).

Finally, we can check as in proposition 3.3 and proposition 3.4 of [4] that
√
ρ→

U (ρ)Φ is a continuous map from D0 into L2
a(R3N ). So Ψn = U (ρn)Φ converges

towards U (ρ)Φ = Ψ in L2, which concludes the proof of theorem 2.2. �

3.6. Proof of theorem 2.3

We first establish a density result. Let H1
a (R3N ) := L2

a(R3N ) ∩H1.

Proposition 3.3. Let N > 2 and Γ a class of symmetry such that Γ∩L2
a(R3N ) 6= {0}.

Then, for the H1-norm:

{Ψ, Ψ ∈ Γ ∩H1
a

(
R3N

)
∩ C∞

(
R3N

)
, ρ̃Ψ H1-admissible} = Γ ∩H1

a

(
R3N).

Proof. Let ε > 0 and Ψ ∈ Γ ∩ H1
a (R3N ). There exists Ψ0 ∈ H1

a (R3N ) ∩ C∞
with compact support and such that ‖Ψ0 − Ψ‖H1 6 ε/2 (where we define ‖Ψ‖2

H1 =

‖Ψ‖2
2 + ‖∇Ψ‖2

2). Let R > 0 such that supp(Ψ0) ⊂ [−R,R]3N . Let Ψ1 = PχΨ0

(χ the character associated with Γ). By definition of Pχ we obtain easily Ψ1 ∈
Γ ∩H1

a (R3N ) ∩ C∞, supp(Ψ1) ⊂ [−R,R]3N , and ‖Ψ1 − Ψ‖H1 6 ‖Ψ0 −Ψ‖H1 6 ε
(since Ψ1 −Ψ = Pχ(Ψ0 −Ψ)).

We then consider for λ > 0, Ψ2 = Ψ1 + λΘ, where Θ is of the form

Θ = AN
[
Φ(w1, . . . ,wp)φ1(r1) · · · φN (rN )

]
.

We are going to search for λ and Θ such that Ψ2 be an approximation of Ψ and ρ̃Ψ2

be H1-admissible.
Using remark 3.2, we know that, given orthonormal (φi) in L2(R3) (radial func-

tions), there exists a Φ ∈ C∞((S2)p) and of symmetry Γ, such that ρ̃Θ =
∑N

i=1 |φi|2

in the atom and linear cases, and ρ̃Ψ =
∑N

i=2 |φi|2 + |φ1|2 |̃Φ|2 in the nonlinear case
(with p = 1).

We have ρΨ2 = ρΨ1 + λ2ρΘ + 2NRe(I) where

I(x1) =

∫
R3N−3

Ψ1(x1, x2, . . .) Θ(x1, x2, . . .) dx2 . . . dxN . (23)

Then we choose regular functions (φi) such that φN > 0 and φN (r) = e−r for
r > 1, and (φi)16i6N−1 with compact support included in R3\[−R,R]3, and such
that (φ1, . . . ,φN ) be orthonormal in L2(R3). Since N > 1 and because of the disjoint
supports, we obtain I = 0.

Note also that ρ̃Θ is H1-admissible, and that ρ̃Ψ1 is of compact support. Then,
we choose λ > 0 small enough so that ‖Ψ2 −Ψ‖H1 6 ε. We have Ψ2 ∈ Γ, regular,
and we can check that ρ̃Ψ2 = ρ̃Ψ1 + λ2ρ̃Θ is also H1-admissible. �

Using similar arguments as in Lieb [31] (theorem 3.3), and corollary 3.1, we can
also obtain the following lemma:
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Lemma 3.6. Let Ψj ∈ L2
a(R3N ) and ρj = ρ̃Ψj , such that

(i) Ψj → Ψ weakly in L2
a(R3N ) and strongly in L2(Ω) for any bounded Ω,

(ii) ρj → ρ weakly in L1(R3).

Then Ψj → Ψ strongly in L2
a(R3N ), and, in particular, ρ = ρ̃Ψ.

Now we can prove theorem 2.3. First, we obtain (9) using proposition 3.3. Then,
in order to show that FΓ[ρ] is a minimum when ρ is an H1-admissible density function,
let Ψj be a minimizing sequence for E[Ψj] (where we denote E[Ψ] = 〈Ψ,HΨ〉) and
such that ρ = ρ̃Ψj . Since v ∈ L3/2(R3) + L∞(R3) in (1), we have ‖Ψj‖H1 bounded
as soon as E[Ψj] is bounded. So we may extract a subsequence (Ψj) that is weakly
convergent to a Ψ in H1, and strongly convergent to Ψ in L2(Ω) for any bounded set
Ω ⊂ R3N .

We apply lemma 3.6 to (Ψj) (with ρj = ρ), and obtain that Ψj → Ψ in L2
a(R3N )

and ρ = ρ̃Ψ. The state Ψ still has the symmetry Γ. So FΓ[ρ] 6 E[Ψ].
Also, there exists a constant C > 0 such that q(Φ) = E[Φ]+C‖Φ‖2 is a positive

quadratic form. So q(Ψ) 6 lim inf q(Ψj), and we obtain E[Ψ] 6 limE[Ψj ] = FΓ[ρ].
Hence FΓ[ρ] = E[Ψ] with ρ = ρ̃Ψ which concludes the proof of theorem 2.3.

3.7. Miscellaneous results and remarks

In the following theorem, we give slight improvements of theorem 2.1, corol-
lary 2.1 and proposition 3.3, by demanding more regularity on the wavefunctions Ψ.
Let E be the following subset of R3N :

E :=
{

(x1, . . . , xN ) ∈ R3N , ∃i, xi ∈ K
}
.

Theorem 3.3. Let N > 2 and let Γ be a class such that Γ ∩ L2
a(R3N ) 6= {0}.

(i) Let ρ be H1-admissible. There exists Ψ ∈ Γ ∩ L2
a(R3N ) ∩ H1 ∩ C∞(R3N\E),

with Ψ and ∇Ψ bounded on R3N , such that ρ̃Ψ = ρ.

(ii) {
√
ρ̃Ψ, Ψ ∈ Γ ∩ L2

a(R3N ) ∩ H1 ∩ C∞(R3N ), ρ̃Ψ H1-admissible} is dense in
D1 = {

√
ρ, ρ > 0,

√
ρ ∈ H1(R3), ρ̃ = ρ} for the H1-topology.

Proof. (i) We proceed as in section 3.4 and search for Ψ in the form Ψ := TfΨ1. In
order to obtain the regularity on Ψ, we start from a Ψ1 ∈ C∞(R3N ) (in Γ), with Ψ1

and ∇Ψ1 bounded, and such that ρ1 = ρ̃Ψ1 be H1-admissible (using remark 3.2). We
consider the solution f of ρ = f ∗ ρ1 as in theorem 3.1, which gives ρ̃Ψ = ρ. Then,
the deformation Tf keeps the regularity except possibly at the nuclei positions, so
Ψ ∈ C∞(R3N\E). By theorem 3.1 we have also Df = (∂fi/∂xj) (and Jf) bounded in
R3. Using Jf = ρ1/ρ(f) and the fact that ∇ρ/ρ and ∇ρ1/ρ1 are bounded, we deduce
from

∇Jf

Jf
=
∇ρ1

ρ1
− DfT∇ρ(f)

ρ(f)
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that ∇Jf is bounded in R3. We then conclude easily that Ψ and ∇Ψ are
bounded.

(ii) This is a consequence of proposition 3.3 and corollary 3.1 and the fact that
if θ is a continuous application and if A is dense in B then θ(A) is dense in θ(B).
(Furthermore, in order to have Ψ ∈ C∞, we consider here only functions ρ that are
regular and H1-admissible.) �

Remark 3.4. In the case N = 1, we have ρΨ = |Ψ|2 and theorem 2.1 (i) may not hold
because of vanishing density functions.

To illustrate the above remark, we give an example. Let G = {Id,σ} where
σ(x, y, z) = (x, y,−z) is the symmetry of plane Π = {(x, y, z) ∈ R3, z = 0}. There
are two classes of symmetry: ΓA1 = {Ψ ∈ L2(R3), Ψ(σ) = Ψ} and ΓA2 = {Ψ ∈
L2(R3), Ψ(σ) = −Ψ}. Note that if Ψ ∈ ΓA2 ∩H1, then Ψ(x, y, .) is well-defined in
L2(R2) by the usual trace theorem, and Ψ(x, y, 0) = 0. So ρ̃Ψ = ρΨ = |Ψ|2 vanishes
on Π. Reciprocally, if ρ > 0,

√
ρ ∈ H1(R3) and

√
ρ|Π = 0. Then we can define

Ψ =
√
ρ for z > 0 and Ψ = −√ρ for z < 0, and check that Ψ ∈ ΓA2 ∩H1(R3). Thus{
ρ̃Ψ, Ψ ∈ ΓA2 ∩H1(R3)} =

{
ρ > 0,

√
ρ ∈ H1(R3), ρ = ρ̃,

√
ρ|Π = 0

}
.

Characterizations of the same type can be obtained for the other classes of symmetry
when N = 1.

4. Some applications

A first way to approximate the energy E0,Γ from the theoretical definition (8) is
the following. Take Ψ0 ∈ Γ to be a given reference wavefunction (an initial guess of
the exact eigenvector associated to E0,Γ). Define

E[f; Ψ0] := 〈TfΨ0, HTfΨ0〉/〈TfΨ0, TfΨ0〉, (24)

where f is assumed to be any symmetric deformation of R3 (see section 3.4). Note
that E0,Γ 6 E[f; Ψ0] because TfΨ0 ∈ Γ, so equation (24) is variational.

Then the energy E[f; Ψ0] (energy of the wavefunction Ψ = TfΨ0) can be calcu-
lated for instance using a variational Monte Carlo method [47]. In this case we can
take Ψ0 = QJΨdet

0 , a product of a Jastrow factor QJ (which does not affect symmetry)
and of a determinant Ψdet

0 ∈ Γ (or a simple linear combination of determinants). It is
known that the Jastrow factor, introduced in order to take into account dynamic cor-
relation, deteriorates the density function of Ψdet

0 . Thus the deformation f can be used
to recover a better density (with only few parameters to optimize for f). Numerical
examples are given in [6] for helium and [3] for atoms and a diatomic molecule.

Furthermore, if f = fρ is a solution of the Jacobian problem ρ = f ∗ ρ̃Ψ0 for
symmetric ρ densities then

ρ→ E[fρ; Ψ0] (25)
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becomes a true variational density functional for the energy E0,Γ. A natural question
is then how to compute the energy in (25) (solving the Jacobian problem in the same
time)?

We mention here that this task has been considerably simplified in the case
of a periodic crystal model, where Ψ0 is a plane wave determinant in some Bloch
space and where fρ is a “periodic deformation” of the lattice cell (fρ is closed to
the identity deformation; periodicity corresponds here to symmetry with respect to
the cell). In [7–10] it is shown, using almost explicit calculations, how to recover
rigorously the usual DFT approximations in the slowly varying density limit (ρ closed
to the average density) and assuming the number of electrons N is large. In particular,
we show how to recover Thomas–Fermi, Von–Weisäcker and Slater–Dirac functionals,
within the same deformation approach.

Finally, we also mention the work and Ludeña et al. [34], an approach that uses
deformations in order to deal with the density constraint in T (ρ) (also denoted Ts[ρ],
the infimum of the kinetic energy of the free-electron gas with constraint density ρ).
For the “exact” ρ density, this minimization procedure is believed to give the “exact”
exchange-correlation potential Vxc (as a Lagrange parameter associated to the ρ con-
straint, see [11,41,48]). In this approach we should also take care of the symmetry.
In [34] radially symmetric situations are studied (atoms). Looking carefully at this
work shows that indeed it is only the radially symmetric part of the densities that are
constrained to keep a given radial density. So indeed a better formulation for T (ρ)
could be (for totally symmetric ρ’s):

TΓ(ρ) := inf
{
Tkin(Ψ), ρΨ = ρ, Ψ ∈ Γ ∩H1, Ψ = det

}
(the notation Ψ = det meaning determinantal wavefunctions) in the case the class Γ
is of dimension one or can be reached by determinant wavefunctions. Otherwise we
could use

TΓ(ρ) := inf
{
Tkin(Ψ), ρ̃Ψ = ρ, Ψ ∈ Γ ∩H1}

(eventually Ψ ∈ Γ and is a small linear combination of determinant). Anew, using
the results of the paper, the above quantities are well defined as soon as N > 2
and Γ ∩ L2

a(R3N ) 6= {0}. They could also be approximated, in principle, using a
deformation approach as above, and we hope to be able to study these energies in a
periodic model as in [8].
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